
Exception Handling Tables aC++ A.01.15 - Public version
7. Exception Handling Tables
This section describes the data that the compiler generates to enable the runt-
ime to find appropriate information on the actions to take in case of excep-
tion.

7.1. Overview
The process of finding exception handling information from the current PC
is summarized in the diagram below:

All tables are in “text” space. The types pointed by the typeinfo pointers are
identified by a GP-relative offset.

7.2. System unwind tables
These are described in "64-Bit Runtime Architecture and Software Conven-
tions for IA-64" [2]. The most important field for C++ exception handling is

Unwind Library Data
C++ Specific Data

Call-site Code Range
Landing-pad Code Range

Call site PC

Unwind Table

@End

Note: Unwind Library data fields irrelevant to this diagram not shown

@Start

@End

InfoPtr

@Start
Perso.

Unwind
Info. Block

Descr.

Routine

LSDA

Lang. Spec. Data Area

@LPStart

@LPStart
@TTBase

Call Sites Table

Action Table

PC
Call site record

Action Record

LEB128 Records

Call site - Prev CS
L. Pad - @LPStart

Action Record Offset

Type filter
Offset to next AR

Call Site Record

Action Record

1

1

Types Table

T3 typeinfo
T2 typeinfo
T1 typeinfo

Indexed by filter value
for “catch” action records

ExceptionSpecs

0
T1 Index
T2 index

0
T3 Index

0

(T1, T2)

(T3)

()

2

2

2

Call Site Size

(May be equal to @Start)

@TTBase

@TTBase

(Optional)

3

3

Action Record
44

Byte offset to 0-term list
for “spec” action records
27 



Exception Handling Tables aC++ A.01.15 - Public version
the “start” field of the unwind table entries. Call sites are stored as offsets rel-
ative to the procedure fragment start. Note that a single procedure may be
split into more than one procedure fragment.

If a procedure is being split and causes more than one procedure fragment to
exist, landing pads can reside in any of the possible fragments. There may
even be a fragment specifically for the landing pads, which typically corre-
spond to infrequently executed code. However, there is currently no special
provision for more than one landing pad fragment per procedure fragment
(“hot” and “cold” landing pads, for instance).

This can only be achieved by duplicating the unwind table entries and LSDA
for each such fragment. An alternative was considered, where a bit would
indicate whether a landing pad was relative to the procedure fragment or
landing-pad fragment, but the benefit was considered insufficient compared
to the space loss.

7.3. The language-specific data area
The language-specific data area (LSDA) contains pointers to related data, a
list of call sites, and a list of action records. Each procedure fragment coming
from C++ code (nominally a function) has its own LSDA. Several parts of
the LSDA use the LEB128 compression scheme, which is described in
Section 7.8 on page 33.

7.3.1. LSDA header
The LSDA header contains fields which apply to a procedure fragment. Cur-
rently, there are two fields defined:

• The landing pad start pointer. This is a self-relative offset to the start of
the landing-pad code for the procedure fragment. Landing pad fields in
the call-site table are relative to this pointer. A value of 0 means that the
LSDA is otherwise empty. The low four bits are reserved. A value of
0000 means that there is a type table pointer. A value of 0001 means that
there is no type table pointer. In the rest of this document, this address is
called LPStart.

• The types table pointer. This is a self-relative offset to the types table
(catch clause and exception-specification types), described in Section 7.4
on page 30. This word does not exist if the value of the low four bits of
the landing pad offset have value 0001. In the rest of this document, this
address is called TTBase.

7.3.2. Call-site table
The call-site table is a list of all call sites that may throw an exception (includ-
ing C++ ‘throw’ statements) in the procedure fragment. It immediately fol-
lows the LSDA header. Each entry indicates, for a given call, the first
corresponding action record and the corresponding landing pad.
28



Exception Handling Tables aC++ A.01.15 - Public version
The table begins with the number of bytes, stored as a LEB128 compressed,
unsigned integer. The records immediately follow the record count. They are
sorted in increasing call-site address. Each record indicates:

• The position of the call-site,
• The position of the landing-pad,
• The first action record for that call-site.

Call-site record fields: 

All fields of the landing pad table are compressed using the LEB128 encod-
ing (described in Section 7.8, “Decoding exception records” on page 33).

A missing entry in the call-site table indicates that a call is not supposed to
throw. Such calls include:

• Calls to destructors within cleanup code. C++ semantics forbids these
calls to throw.

• Calls to intrinsic routines in the standard library which are known not to
throw (sin, memcpy).

If the runtime does not find the call-site entry for a given call, it will call ter-
minate().

7.3.3. Action table
The action table follows the call-site table in the LSDA. The individual
records are one of two types:

• Catch clause, described in Section 7.4 on page 30.
• Exception specification, described in Section 7.5 on page 31.

The two record kinds have the same format, with only small differences.
They are distinguished by the “switch value” field: Catch clauses have
strictly positive switch values, and exception specifications have strictly neg-
ative switch values. Value 0 indicates a catch-all clause.

call site Offset of the call site relative to the previous call
site, counted in number of 16-byte bundlesa. The
first call site is counted relative to the start of the
procedure fragement.

a. The IA64 architecture specifies that a single call will execute in a given bundle.
Multiple calls may be placed in a single bundle (for instance, in an expression like
a ? b() : c() ) only if they can share the same landing pad.

landing pad Offset of the landing pad, counted in 16-byte
bundles relative to the LPStart address.

action record Offset of the first associated action record, rela-
tive to the start of the actions table. This value is
biased by 1 (1 indicates the start of the actions
table), and 0 indicates that there are no actions.
29 



Exception Handling Tables aC++ A.01.15 - Public version
Action record fields: 

All fields are compressed using the LEB128 encoding (described in Section
7.8, “Decoding exception records” on page 33). The structure of the action
table is determined by the C++ front-end but subject to modification by inlin-
ing and other optimizations. Code generation is responsible for assigning
actual switch values and “next record” offsets.

7.4. Catch Clause
The code for the catch clauses following the same try is similar to a switch
statement. The catch clause action record informs the runtime about the type
of a catch clause and about the associated switch value.

Note Note that the runtime may apply some conversions when an exception is thrown with a differ-
ent type (see acceptable conversion in [except.handle], 15.3.3, in the "ISO C++ Final Draft
International Standard".) So the pointer to the type information cannot directly be used as a
switch value, for instance.

Action Record Fields: 

All fields are compressed using the LEB128 encoding (described in Section
7.8, “Decoding exception records” on page 33).

The order of the action records determined by the next field is the order of the
catch clauses as they appear in the source code, and must be kept in the same
order. The C++ language allow two catch clauses in a same procedure to
cover related types (such as base and derived). As a result, changing the order
of the catch clause would change the semantics of the program.

type filter Used by the runtime to match the type of the
thrown exception to the type of the catch clauses
or the types in the exception specification.

action record Self-relative signed displacement in bytes to the
next action record, or 0 if there is no next action
record.

filter value Positive value, starting at 1. Index in the types 
table of the __typeinfo for the catch-clause type. 
1 is the first word preceding TTBase, 2 is the 
second word, and so on. Used by the runtime to 
check if the thrown exception type matches the 
catch-clause type. Back-end generated switch 
statements check against this value.

next Signed offset, in bytes from the start of this field, 
to the next chained action record, or zero if none.
30



Exception Handling Tables aC++ A.01.15 - Public version
Runtime Action: If the thrown exception type matches the catch clause
type, the switch value of the action record will be passed by the runtime to
the landing pad in the “switch selector” argument.

Front-end: The front-end generates an XHJP operator that references this
action record.

Back-end: The back-end will assign switch values. If two XHJP operators
may be reached from a same landing pad, then they cannot share any switch
value, except to represent the exact same type. The XHJP operators will be
transformed into switch statements, which branch to the catch clause code if
the switch selector value matches the switch value of the action record.

7.5. Exception Specification
An exception specification violation is indicated by the runtime by setting the
“switch selector” value to a negative value. Code in the landing pad checks
if the switch selector value is that negative value, and if so, calls the
__cxa_unexpected routine. Otherwise, the exception is propagated out.

Action Record Fields: 

All fields are compressed using the LEB128 encoding (described in Section
7.8, “Decoding exception records” on page 33).

The exception specification acts very much like a catch clause: when the
thrown exception violates the exception, unwind pass 1 indicates that a han-
dler was found, and pass 2 transfers control to a handler in the generated
code.

Runtime Action: The exception handling library will check if the thrown
exception is within the list of possible exception types. If not, it will set the
landing pad “switch selector” argument to the indicated negative value.

List of C++ types Negative value, starting at -1, which is the byte 
offset in the types table of a null-terminated list 
of type indexes. The list will be at TTBase+1 for 
-1, at TTBase+2 for -2, and so on. Used by the 
runtime to match the type of the thrown excep-
tion with the types specified in the “throw” list. 
Back-end generates a switch statement that 
checks for that particular value.

next Signed offset, in bytes from the start of this field, 
to the next chained action record, or zero if none.
31 



Exception Handling Tables aC++ A.01.15 - Public version
Front-end Generated Code: The generated code for an exception-specifi-
cation handler will check if the switch selector value is an appropriate nega-
tive value. If not, the exception is propagated out.

S1:
// Corresponding to an XHJP statement
switch(switchSelector)
{

case NEGATIVE_SWITCH_VALUE: goto H1
}

X1:
[RESX]

H1:
__cxa_unexpected();

Note that after inlining of a function with an exception specification, some
code may actually use the switch selector value in the calling function, if it
does not match the negative value specified in the action record and control
falls through the “default” exit.

7.6. Type table
The type table is an array of uncompressed GP-relative displacements to
__type_info objects describing C++ types. Filter values in a catch-clause
record are indexes into this array. This type is generated by the back-end.

For instance, in a code containing catch(A), catch(B) and catch(C), the table
may contain:

• The __typeinfo for A in the first word before TTBase, corresponding to
filter value 1.

• The __typeinfo for B in the second word before TTBase, corresponding to
filter value 2.

• The __typeinfo for C in the third word before TTBase, corresponding to
filter value 3.

7.7. Exception Specification Table
This table contains lists of types used in exception specifications. The lists
are null-terminated sequential runs of compressed indices into the type table.
The table is generated by the back-end.

For example, given the type descriptions of Section 7.6, we may encode two
functions with throw(A, B) and throw (C) using the following bytes:

0,
1, 2, 0 // throw(A,B)
3,0 // throw(C)

In an action record, the exception specification is encoded as the negative of
the offset from the beginning of the table. throw(A, B) would have a filter
value of -1, and throw(C) would have a filter value of -4.

Note that the type indices may be longer than one byte (they are LEB128
encoded).
32



Unwind Library Interface aC++ A.01.15 - Public version
7.8. Decoding exception records
As noted in the sections on action records and the unwind tables, almost all
fields in the exception tables are stored in compressed format to save space.
The format used is Little-Endian Base 128 (LEB128). This is the same com-
pression scheme as that used in the DWARF object module format.

To decode LEB128:

• Collect a run of bytes with the high bit set followed by a single byte with
the high bit clear. (A most-significant bit of 0 is a sentinel that indicates
the end of a LEB128 value).

• Discard the high bit of each byte. Now N 7-bit bytes remain.
• Form a 7N-bit binary number from the bytes in little-endian order (the

last byte is most significant).
• If the value is signed, interpret it as a twos-complement number with the

most significant bit as sign.

To encode LEB128:

• Divide the value into groups of 7 bits, beginning with the least significant
bits (little-endian order).

• If the value is unsigned, zero-extend the final group to 7 full bits. If the
value is signed, sign-extend the final group to 7 full bits.

• Discard all groups of “leading” zeroes, but keep at least the first (least
significant) group if the number is 0. If the value is signed, discard all
groups of redundant “leading” ones (sign extension), but be sure to keep
at least one set sign bit (see the example for -128 below).

• Mark all but the last group with a most-significant bit of 1; mark the last
group with a most-significant bit of 0.

Examples (sentinel bits bold, sign bits underlined): 

8. Unwind Library Interface
This section defines the Unwind Library interface as exposed for the com-
mon C++ ABI.

LEB128-encoded bytes binary value value (signed)
00000000 0000000 0
00111111 0111111 63
01111111 1111111 127 (-1)
10000000 00000001 00000010000000 128
10000001 00000001 00000010000001 129
10000000 01111111 11111110000000 16256 (-128)
10001000 00001100 00011000001000 1544
10000000 01000000 10000000000000 8192 (-4096)
10001010 10000101 00000011 000001100001010001010 49802
33 



Unwind Library Interface aC++ A.01.15 - Public version
The unwinding library interface consists of at least the following routines:
_Unwind_RaiseException,
_Unwind_Resume,
_Unwind_DeleteException,
_Unwind_GetGR,
_Unwind_SetGR,
_Unwind_GetIP,
_Unwind_SetIP,
_Unwind_GetRegionStart,
_Unwind_GetLanguageSpecificData,
_Unwind_ForcedUnwind

In addition, two datatypes are defined (_Unwind_Context and
_Unwind_Exception) to interface a calling runtime (such as the C++ runtime)
and the above routines. All routines and interfaces behave as if defined extern
“C”. In particular, the names are not mangled.

Last, a language and vendor specific personality routine will be stored by the
compiler in the unwind descriptor for the stack frames requiring exception
processing. The personality routine is called by the unwinder to handle lan-
guage-specific tasks such as identifying the frame handling a particular
exception.

8.1. Design Discussion
There are two major reasons for unwinding the stack:

• exceptions, as defined by languages that support them (such as C++)
• "forced" unwinding (such as caused by longjmp or thread termination).

The interface described here tries to keep both similar. There is a major dif-
ference, however.

• In the case an exception is thrown, stack is unwound while the exception
propagates, but it is expected that each runtime knows if it wants to catch
the exception or let it go through. This task is delegated to the personality
routine, which is supposed to act properly for any type of exception,
either "native" or "foreign". Some guidelines for "acting properly" are
given below.

• During "forced unwinding", on the other hand, an external force is driv-
ing the unwinding. For instance, this can be the longjmp routine. This
external force, not each personality routine, knows when to stop unwind-
ing. The fact that a personality routine is not given a choice about whether
unwinding will go further or not is indicated by the EH_FORCE_UNWIND
flag.

To accomodate for these differences, two different routines are proposed.
_Unwind_RaiseException performs unwinding under the personality routines
control. _Unwind_ForcedUnwind, on the other hand, performs unwinding, but
gives the "external force" the opportunity to intercept calls to the personality
routine. This is done using a proxy personality routine, that intercepts calls to
the personality routine, letting the external force supersede the defaults of the
personality routine.
34


